
Application Design

The Chevalier application has been organized into four distinct groups of objects, 

Game Objects, Presentation Objects, Game State Objets, and Rules Objects. For a System 

Diagram expressed using Unified Modeling Language4 of objects in Chevalier and how 

they interact within the application see Figure 1.0.

The Game Objects, labeled in gray on the System Diagram, are controller objects, 

the most important of which is the Chevalier Object, which may be thought of as the 

main controller that is the first created object and from which all other objects for the 

application are generated. In particular, two Player Objects are created, one for each 

player. Each Player Object has four array lists with references to the created Elements 

pertaining to that player’s army. There is a left list, containing all the Elements in the 

player’s left command; a right list, for the right command; a center list, for the center 

command; and a dead list, where all Element references from any command are moved 

to once they are designated as removed from the game. Every Element Object has 

references to 9 Footprint Objects. The first eight Footprints are pre-generated templates 

representing the Element in every facing, one for each spoke of the compass, these eight 

pre-generated templates facilitate faster game response. The ninth Footprint, represents 

the current element position. There are also two sets of ten MoveType Objects that are 

used to describe types of moves Element Objects may make.

4 For information on Unified Modeling Language see www.uml.org.



Figure 1.0 - System Diagram

Animatem

updateTime
updatePrev
sprites:Array

Sprite

view
location
velocity, scale

Grid

topLeft
blockWith, 
blockHeight

MMatrix

width
height
data:Array

Player

left:Array
center:Array
right:Array
dead:Array

Element

type, grade,
sprite, gridLoc,
footPrints:Array 
combatTable

Footprint

front:Array
back:Array
left:Array
right:Array

Choose
xml:XML
armies:Array

StartTurn

game

Movement
marquee
mapView
scroll

Shoots
shoots:Array
shootsPage
grid

Battles
battles:Array
battlePage

CombatTable

element
valueVsMounted
valueVsFoot

Scroll

moveTypes:Array

1

*

1 2

*

9

1 1 1 11 1

1

MoveType

x, y

20

PlaySnd

sounds:Array
cue:Array
looping

Key to Objects:

GamePresentation

Game State Rules

1

Chevalier

animatorsound
grid
blockSize scroll

turnNumber
weather state

playerOne
playerTwo



The Game State Objects, labeled in blue on the System Diagram, are those objects 

that represent a specific state the Chevalier game is in. All Game State objects, 

implement the interface IGameState, which ensures that each State Object is prepared to 

accept various update calls, start state and end state calls, and standardized input from the 

keyboard and mouse.

There are five game states; “Choose,” for choosing an army or battle scenario at 

the beginning of the game; “StartTurn,” for displaying and initializing a new turn; 

“Movement,” for moving elements around on the map; “Shoots,” for conducting the 

resolution of distant shooting; and “Battles,” for conducting close combat. The last four 

states each represent a game phase and are called cyclically each turn for each player. 

The Rules Objects, labeled in green on the System Diagram, have been 

intentionally encapsulated away from the Game Objects to allow for future 

interchangeability of game systems created by Wargames Research Group, namely DBA, 

DBM, DBR and DBMM. It is theoretically possible to cater for each DB rule set by 

creating each its own customized instance of Rules Objects. At the beginning of 

Chevalier the player could potentially choose a rule set by which to play the game and 

the appropriate Rules Objects be loaded. There are two Rules Objects, the CombatTable 

Object, which contains all the rules and tables for conducting combat, and the Scroll 

Object, which is partly a controller object, but has all the specifics of game movement.



The Presentation Objects, labeled in red on the System Diagram, are those that 

handle screen display and screen management. They are all generic objects that are 

encapsulated away from the main body of code and are in no way specific to Chevalier. 

The most important Presentation Objects are the Animatem and Sprite Objects, which 

together comprise the Animatem engine. This engine is essentially a velocity engine that 

handles the timed animation of multiple Sprites. When Sprites collide or reach a 

destination they send message back to the controlling Chevalier Object which deals with 

the situation appropriately. Every Element Object is assigned a Sprite that is used to 

display the state and position of the corresponding Element. There is also a Sprite 

assigned to the game map, allowing it to be moved, scaled, and rotated easily via the 

Animatem engine. A generic PlaySound Presentation Object is used specifically to 

handle game audio, and there are MMatrix and Grid Objects that deal with map 

locations, terrain, and locations of Elements on the gaming map.




